Ge₂H₂: A Molecule with a Low-Lying Monobridged Equilibrium Geometry

Zoltán Palágyi,^{†,‡} Henry F. Schaefer III,^{*,†} and Ede Kapuy[§]

Contribution from the Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, and Department of Theoretical Physics, József Attila University, H-6720, Szeged, Hungary

Received February 10, 1993

Abstract: Recent experimental and theoretical studies reporting remarkable monobridged structures for Si₂H₂, Al₂H₂, and Ga2H2 have motivated us to re-investigate the singlet potential energy surface of Ge2H2 using the self-consistentfield (SCF), single and double excitation configuration interaction (CISD), and single and double excitation coupled cluster (CCSD) methods in conjunction with a double-5 plus polarization basis set (DZP). In addition to the dibridged (or butterfly) ground state and the low-lying vinylidene-like minimum reported earlier by Grev and DeLeeuw, our study predicts the existence of a monobridged isomer, which is characterized as a minimum by means of harmonic vibrational frequency analyses. Relative energies of the above structures were also predicted with use of the coupled cluster single, double, and (perturbative) triple excitation method (CCSD(T)), which employed a triple- ζ plus polarization basis set augmented with a set of f functions on the germanium atoms (TZP+f). Final energetic predictions suggest that the monobridged structure is the second most stable isomer of Ge_2H_2 , lying 8.9 kcal mol⁻¹ above the butterfly ground state and 2.1 kcal mol⁻¹ below the branched (vinylidene-like) minimum.

Introduction

Among small molecules, one of the most interesting structural discoveries in recent years has been that of the monobridged equilibrium geometry of the Si₂H₂ molecule The existence of

such a structure, which apparently has no precedent, was proposed in 1990 by Colegrove.¹ She predicted this structure to be a genuine equilibrium and to lie only 10.8 kcal/mol above the dibridged "butterfly" global minimum²⁻⁴ of Si₂H₂.

The spectacular success of the Lille group⁴ in observing and analyzing the microwave spectrum of the butterfly global minimum of Si_2H_2 led them to attempt to synthesize other new Si_xH_y molecules. In cooperation with the Georgia theoretical group, Cordonnier, Bogey, Demuynck, and Destombes⁵ were able to observe and analyze a total of 148 microwave features that were assigned to the monobridged Si_2D_2 and Si_2H_2 species 1. The observed microwave lines are remarkably consistent with the theoretical predictions of Colegrove¹ and of Grev.⁶ Grev has provided an incisive qualitative picture of the bonding in Si_2H_2 and related systems.

Given the very recent observation⁵ of the peculiar monobridged structure 1 of Si_2H_2 , an obvious question is whether comparably low-lying equilibrium geometries of other A₂H₂ molecules exist. It would certainly be surprising if the much studied⁷ acetylene

- [†] József Attila University. (1) Colegrove, B. T.; Schaefer, H. F. J. Phys. Chem. 1990, 94, 5593 (J.
- A. Pople Issue).
- (2) Lischka, H.; Köhler, H. J. Am. Chem. Soc. 1983, 105, 6646.
 (3) Binkley, J. S. J. Am. Chem. Soc. 1984, 106, 603.
 (4) Bogey, M.; Bolvin, H.; Demuynck, C.; Destombes, J.-L. Phys. Rev. Lett. 1991, 66, 413. (5) Cordonnier, M.; Bogey, M.; Demuynck, C.; Destombes, J.-L. J. Chem.
- Phys. 1992, 97, 7984.
- (6) Grev, R. S.; Schaefer, H. F. J. Chem. Phys. 1992, 97, 7990. (7) Smith, B. J.; Smernik, R.; Radom, L. Chem. Phys. Lett. 1992, 188, 589

potential surface C_2H_2 revealed such a stationary point. The next sensible neutral example would be the germanium analogue Ge_2H_2 . Therefore, we explore here a part of the Ge_2H_2 potential energy hypersurface not considered in previous theoretical work.⁸

Theoretical Methods

Several stationary points on the Ge₂H₂ potential energy surface were initially located by using SCF gradient techniques9,10 in conjunction with a basis set designated double-5 plus polarization (DZP). The DZP basis for germanium consists of the Dunning¹¹ 14s11p5d primitive set of Gaussian functions contracted to 7s5p2d¹² augmented by a set of six Cartesian d-like functions ($\alpha_d(Ge) = 0.25$). For hydrogen we used the standard Huzinaga-Dunning-Hay¹³⁻¹⁵ double-5 basis set augmented by a set of p-like functions ($\alpha_p(H) = 0.75$). The contraction scheme for this **DZP** basis is

Ge[6112211/61211/411], H[31/1]

For the evaluation of the relative energies of various structures we employed a basis set designated triple-5 plus polarization plus f functions (TZP+f). For germanium, it consists of the above primitive set more loosely contracted to 10s8p2d and augmented with a set of d- and f-like polarization functions $[\alpha_d(Ge) = 0.25, \alpha_f(Ge) = 0.45]$. For hydrogen it is the standard Huzinaga-Dunning triple-5 basis set augmented by a set of p-like functions ($\alpha_p(H) = 0.75$). Thus the contraction scheme for this basis set is

Ge[511111111/4111111/411/1], H[311/1]

DZP SCF quadratic force constants and harmonic vibrational frequencies were determined with the use of analytic energy second derivative methods.¹⁶ Starting with the DZP SCF geometries and force constants, we then reoptimized the structures using first the configuration interaction

- (8) Grev, R. S.; DeLeeuw, B. J.; Schaefer, H. F. Chem. Phys. Lett. 1990, 165. 257
- (9) Pulay, P. Modern Theoretical Chemistry; Schaefer, H. F., Ed.;
 Plenum: New York, 1977; Vol. 4, pp 153-183.
 (10) Dupuis, M.; King, H. F. J. Chem. Phys. 1978, 68, 3998.
 (11) Dunning, T. H. J. Chem. Phys. 1977, 66, 1382.

 - (12) The contraction (14s11p5d/7s5p2d) is due to R. S. Grev and H. F. Schaefer, unpublished.
 - (13) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293.
 - (14) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823
 - (15) Dunning, T. H.; Hay, P. J. Modern Theoretical Chemistry; Schaefer, H. F., Ed.; Plenum: New York, 1977; Vol. 3, pp 1-27. (16) Saxe, P.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1982, 77,
- 5647.

University of Georgia.

^{*} Permanent address: Quantum Theory Group, Physical Institute, Technical University, H-1521, Budapest, Hungary.

Figure 1. Theoretical equilibrium geometries for the global minimum closed-shell singlet, dibridged (C_{2p}) electronic ground state of Ge_2H_2 . Bond distances are in angströms.

Figure 2. Theoretical geometries for the vinylidene-like closed-shell singlet state of Ge_2H_2 . Bond distances are in angströms.

(CI) method¹⁷ and then the coupled cluster (CC) method¹⁸ in conjunction with the DZP basis set. Only the valence electrons have been correlated explicitly; the core-like SCF molecular orbitals (Ge 1s, 2s, 2p, 3s, 3p, 3d) and the virtual orbital counterparts (Ge 1s^{*}, 2s^{*}) were not included in the CI and CC procedures. Otherwise, all single and double excitations from the SCF reference wave function have been included (CISD, CCSD). The CISD energies have been corrected to approximately include the effects of unlinked quadruple excitations with use of the Davidson formula.¹⁹ These corrected energies are denoted CISD+Q. For final energy predictions the effects of triple excitations were also included perturbatively with the use of CCSD(T) wave functions. We obtained CISD and CCSD harmonic vibrational frequencies by taking finite differences of analytic energy gradients.^{20,21}

The choice of frozen and deleted molecular orbitals requires a bit more justification. First, the freezing of the germanium $3d^{10}$ orbital may seem a bit restrictive since this orbital is conclusively filled only two elements earlier with zinc. However, when one reaches Ge in the periodic table, the 3d orbital energy is -1.635 hartrees,²² whereas the 4s orbital energy is -0.553 hartrees and the 4p orbital energy is -0.287 hartrees. Thus the energy gap [$\epsilon(4s) - \epsilon(3d)$] is substantial, 1.081 hartrees or 29.4 eV. Concerning the virtual orbitals, a referee has questioned why only the 1s⁴ and 2s⁴ virtuals were deleted. The reason is that the other high-lying or core-like virtuals. That is, the distinction between core-like and valence-like virtuals which have some valence character.

Structures and Energies

Theoretical stationary point geometries are shown in Figures 1-3. Table I contains the predicted harmonic vibrational frequencies, infrared (IR) intensities, and normal mode assignments. The assignments were based on the potential energy distribution (PED) among the diagonal elements of the symmetrized force constant matrix on a percentage scale. Standard cotton coordinate systems²³ have been used, and whenever there

Figure 3. Theoretical geometries for the monobridged closed-shell singlet state of Ge_2H_2 . Bond distances are in angströms.

is a choice of coordinate systems, the two germanium atoms have been chosen to lie on the y axis.

Table II summarizes the relative energies as well as the total energies of the global minimum dibridged butterfly structure. Table III lists the largest CI coefficients for each wave function and the corresponding electron configurations. These results show that the single-configuration Hartree–Fock approach is qualitatively reasonable for all three isomers. The fact that the C_o values (0.938, 0.935, and 0.936) are nearly the same further suggests that single-configuration-based correlated methods (such as CISD and CCSD) should do a reasonable job in describing the relative energies of the three isomers. For brevity in this discussion, only results obtained with the DZP CCSD method will be reported explicitly, except relative energies, which are TZP+f CCSD(T) results including DZP CCSD harmonic vibrational energy corrections (see final column of Table II).

The structures corresponding to the butterfly (Figure 1) and vinylidene (Figure 2) isomers are qualitatively similar to those reported earlier by Grev and Deleeuw.⁸ Previous experience would suggest that the true equilibrium geometries should lie intermediate between our DZP CISD and DZP CCSD predictions.

The monobridged structure (Figure 3) is, of course, the principal focus of this research. The theoretical predictions for this peculiar isomer are similar to those for Si_2H_2 . For example, monobridged Ge_2H_2 is actually predicted to be a transition state at the DZP SCF level, precisely as was found¹ for Si_2H_2 . At the DZP SCF level the monobridged structure is a transition state, with its imaginary vibrational frequency being the terminal out-of-plane bend. This appears to confirm that the monobridged structure at the DZP SCF level of theory is a transition state for the degenerate rearrangement of the butterfly global minimum. For both molecules, the introduction of electron correlation at the DZP CISD level is seen to properly describe the monobridged structure as a genuine minimum.

One of the most critical structural features of the monobridged geometry is the angle between the terminal Ge–H bond and the extension of the Ge–Ge bond. This angle is seen in Figure 3 to be 20.8° at the DZP CISD level of theory. The analogous DZP CISD prediction for the monobridged structure of Si_2H_2 is very similar, namely 20.0°. From Grev's work⁶ on Si_2H_2 using much higher levels of theory, a final value of 18.9° is found for this critical angle in monobridged Si_2H_2 .

Another interesting feature of the monobridged Ge₂H₂ structure is the difference between the two bridging Ge-H distances. This difference is 0.181 Å with the DZP SCF method, 0.102 Å with the DZP CISD method, and 0.098 Å with the DZP CCSD method. Colegrove's analogous results¹ for monobridged Si₂H₂ are $\Delta r =$ 0.119 (DZP SCF) and 0.082 Å (DZP CISD). At the highest level of theory considered to date for Si₂H₂ {TZ2P+f CCSD(T)], Grev⁶ predicts the monobridged Δr to be 0.083 Å. Thus, for Ge₂H₂ the ultimate difference between bridging Ge-H distances should be about 0.1 Å, or roughly 0.02 Å more than is the case for monobridged Si₂H₂.

Finally, we compare the predicted Ge–Ge bond distances for the butterfly (2.377 Å), monobridged (2.249 Å), and vinylidenelike (2.322 Å) structures. The bond distances cited are the DZP CISD values, which are expected to be closest to the (unknown) experimental values. As was the case for the valence isoelectronic

⁽¹⁷⁾ Saxe, P.; Fox, D. J.; Schaefer, H. F.; Handy, N. C. J. Chem. Phys. 1982, 77, 5584.

⁽¹⁸⁾ Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1988, 89, 7382.

 ⁽¹⁹⁾ Langhoff, S. R.; Davidson, E. R. Int. J. Quantum Chem. 1974, 8, 61.
 (20) Rice, J. E.; Amos, R. D.; Handy, N. C.; Lee, T. J.; Schaefer, H. F. J. Chem. Phys. 1986, 85, 963.

⁽²¹⁾ Scheiner, A. C.; Scuseria, G. E.; Rice, J. E.; Lee, T. J.; Schaefer, H. F. J. Chem. Phys. 1987, 87, 5361.

⁽²²⁾ Clementi, E.; Roettí, C. At. Data Nucl. Data Tables 1974, 14, 177. (23) Cotton, F. A. Chemical Applications of Group Theory; Wiley Interscience: New York, 1963.

Table I. Harm	nic Vibrational	Frequencies (c	cm⁻¹) for	Ge ₂ H ₂	Structures with 1	Infrared In	ntensities in 1	Parentheses (km/m	10l)
---------------	-----------------	----------------	-----------	--------------------------------	-------------------	-------------	-----------------	-------------------	------

isomer		description	DZP SCF	DZP CISD	DZP CCSD
vinylidene	b2	Ge-H antisym str	2241 (99)	2192 (83)	2158 (78)
-	a 1	Ge-H sym str	2235 (83)	2180 (73)	2144 (72)
	a 1	H-Ge-Ge sym bend	909 (65)	860 (73)	843 (75)
	b1	oop bend	385 (4)	332 (4)	304 (4)
	a 1	Ge-Ge str	337 (2)	318 (4)	305 (5)
	b2	H-Ge-H in-plane wag	304 (29)	260 (21)	252 (19)
monobridged	a'	terminal H-Ge str	2231 (102)	2143 (122)	2095 (122)
_	a'	bridging H sym str	1612 (132)	1560 (105)	1532 (95)
	a'	bridging H antisym str	865 (96)	962 (150)	964 (145)
	a'	H-Ge-H bend	395 (23)	465 (7)	462 (5)
	a'	Ge-Ge str	309 (17)	328 (7)	314 (6)
	a″	terminal H oop bend	43i (68)	123 (43)	114 (38)
dibridged	81	Ge-H sym str	1537 (24)	1534 (12)	1520 (10)
-	bı	Ge-H antisym str	1456 (72)	1446 (51)	1424 (48)
	b ₂	Ge–H str	957 (525)	1054 (469)	1056 (443)
	a2	Ge-H str	736 (0)	931 (0)	947 (0)
	81	torsion (butterfly)	925 (62)	863 (42)	838 (38)
	a1	Ge-Ge str	331 (0)	304 (0)	291 (0)

Table II. Relative Energies (kcal/mol) of Stationary Point Structures for the Ge₂H₂ System, Corrected with Zero-Point Vibrational Energies in the Final Column

	SCF		CISD ^a		CCSD		CCSD(T)	
isomer	DZP	TZP+f*	DZP	TZP+f ^c	DZP	TZP+f ^c	TZP+f	+ZPVE*
vinylidene	4.3	5.6	9.2 9.3	10.6 10.7	9.0	10.4	11.1	11.0
monobridged	13.4	13.7	11.6 10.4	12.0 10.9	10.6	11.0	9.8	8.9
butterfly ⁶	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0

^a The lower number in the CISD boxes is the Davidson corrected energy difference. ^b Total energies (au) for the dibridged structure are as follows—DZP SCF, -4151.592681; TZP+f^c SCF, -4151.782305; DZP CISD, -4151.783933; DZP CISD+Q, -4151.806522; TZP+f^c CISD, -4151.991863; TZP+f^c CISD+Q, -4152.016976; DZP CCSD, -4151.802324; TZP+f^c CCSD, -4152.012199; TZP+f^d CCSD(T), -4152.024124; +ZPVE,^e -4152.010282. ^c At the DZP optimized geometry obtained with the corresponding level of theory. ^d At the DZP CCSD optimized geometry. ^e TZP+f^d CCSD(T) including DZP CCSD harmonic zero-point vibrational energy correction.

Table III. Coefficients Greater than 0.05 in the TZP+f CISD Wave Functions for the Different Ge_2H_2 Structures

isomer	coefficient	configuration
dibridged	0.938	$(\infty re) 11a_1^2 12a_1^2 13a_1^2 5b_1^2 11b_2^2$
-	-0.051	$13a_1^2 \rightarrow 12b_2^2$
monobridged	0.935	(core) 21a ² 22a ² 23a ² 24a ² 9a ²
•	-0.102	$9a''^2 \rightarrow 10a''^2$
	-0.055	$24a^{\prime 2} \rightarrow 25a^{\prime 2}$
	-0.054	24a'9a" → 25a'10a"
vinylidene	0.936	$(core) 15a_1^2 16a_1^2 17a_1^2 7b_1^2 7b_2^2$
•	-0.118	$7b_1^2 \rightarrow 8b_1^2$

 Si_2H_2 system, the central Ge–Ge bond distance is shortest for the monobridged structure. The reader is referred to our recent paper⁶ on Si_2H_2 for a further discussion of the bonding in these closely related systems.

The relative energies of Table II show that the vinylidene-like structure of Ge_2H_2 is the second lowest-lying isomer at the SCF level of theory. However, correlation effects tend to destabilize the vinylidene structure while stabilizing the monobridged structure compared to the global minimum butterfly. Thus, as

was the case with the Si_2H_2 energetics,^{1,6} the Ge_2H_2 monobridged structure eventually becomes the second lowest-lying isomer of Ge_2H_2 . At the ZPVE-corrected TZP+f CCSD(T) level of theory, the monobridged and vinylidene Ge_2H_2 structures are predicted to lie at 8.9 and 11.0 kcal/mol, respectively, above the butterfly global minimum.

Concluding Remarks

The recent experimental discovery⁵ of the peculiar monobridged isomer 1 of Si_2H_2 has raised the question whether other such species might be synthesized. The answer presented here for Ge_2H_2 is an unqualified "yes". For both Ge_2H_2 and Si_2H_2 , the unexpected monobridged structure is energetically the second lowest-lying isomer, predicted to lie less than 9 kcal/mol above the butterfly global minimum.

Acknowledgment. We thank Dr. Roger S. Grev for many helpful discussions concerning the monobridged structures of A_2H_2 molecules. This research was supported by the U.S. Air Force Office of Scientific Research, Grant No. AFOSR-92-J-0047.